ConDPC: Data Connectivity-Based Density Peak Clustering
نویسندگان
چکیده
As a relatively novel density-based clustering algorithm, Density peak (DPC) has been widely studied in recent years. DPC sorts all points descending order of local density and finds neighbors for each point turn to assign the appropriate clusters. The algorithm is simple effective but some limitations applicable scenarios. If difference between clusters large or data distribution nested structure, effect this poor. This study incorporates idea connectivity into original proposes an improved ConDPC. ConDPC modifies strategy obtaining center assigning improves accuracy algorithm. In study, comparison experiments were conducted on synthetic sets real-world sets. compared algorithms include DPC, DBSCAN, K-means two over DPC. results prove effectiveness
منابع مشابه
DenPEHC: Density peak based efficient hierarchical clustering
Existing hierarchical clustering algorithms involve a flat clustering component and an additional agglomerative or divisive procedure. This paper presents a density peak based hierarchical clustering method (DenPEHC), which directly generates clusters on each possible clustering layer, and introduces a grid granulation framework to enable DenPEHC to cluster large-scale and high-dimensional (LSH...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملConnectivity Based Stream Clustering Using Localised Density Exemplars
Advances in data acquisition have allowed large data collections of millions of time varying records in the form of data streams. The challenge is to effectively process the stream data with limited resources while maintaining sufficient historical information to define the changes and patterns over time. This paper describes an evidence-based approach that uses representative points to increme...
متن کاملDensity-Based Projected Clustering of Data Streams
In this paper, we have proposed, developed and experimentally validated our novel subspace data stream clustering, termed PreDeConStream. The technique is based on the two phase mode of mining streaming data, in which the first phase represents the process of the online maintenance of a data structure, that is then passed to an offline phase of generating the final clustering model. The techniq...
متن کاملDensity Based Distribute Data Stream Clustering Algorithm
To solve the problem of distributed data streams clustering, the algorithm DB-DDSC (Density-Based Distribute Data Stream Clustering) was proposed. The algorithm consisted of two stages. First presented the concept of circular-point based on the representative points and designed the iterative algorithm to find the densityconnected circular-points, then generated the local model at the remote si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app122412812